Analysis Status Update: October 8, 2020

DAN NEMES

Reminder: Analysis Details

- Using a semi-inclusive approach to measure z_{g}
- Minimal discrimination on a jet-by-jet basis, instead subtracting contribution from combinatorial jets at the level on ensemble distributions
- Same Events (SE) are HT2 events with a tower *E*_T > 9 GeV
- Mixed Events (ME) are MinBias events, mixed in bins of multiplicity, EP angle, vz, and zdcx such that jets reconstructed in ME are purely combinatorial in nature

Reminder: Analysis Details

- Jets (charged) are reconstructed in both SE and ME within recoil region of high-E_T trigger from SE
- Per-trigger recoil jet yield in ME has to be scaled down by factor $f_{\rm ME}$, due to conservation of number of jets reconstructed
- Using the ratio of SE/ME jet yields, can estimate the amount of combinatorial jet contribution within a given jet $p_{\rm T}$ bin
- After measuring the distribution of SE and ME z_g, scale the ME z_g distribution and subtract from the SE distribution, to get the combinatorialsubtracted z_g distribution

Reminder: Combinatorial-Subtracted z_g Compared to Fast Sim.

- Discrepancy between Data and Fast Sim. for lower two jet $p_{\rm T}$ bins, which COULD be consistent with underestimating combinatorial jet contribution or mischaracterization of combinatorial jet $z_{\rm g}$
- Only showed the highest jet p_{T} bin in Hard Probes poster

Including Dijet Comparison (0-10% Central)

- With Pythia6 Dijet embedding, can sanity check my Fast Sim. Framework
- Dijet embedding currently not a perfectly fair comparison, need to weight events by zdcx and also impose low multiplicity cutoff to mimic analysis
- Both simulation comparisons yield similar results, pointing to the data containing the interesting feature

Shape of ME z_g Investigation

- Tracks are thrown randomly in phi-eta with thermal $p_{\rm T}$ distribution, and jets are reconstructed and constituent subtracted
- Small $p_{\rm T}$ dependence of combinatorial $z_{\rm g}$ distribution
- Very little multiplicity dependence
- ME z_g distribution similar to thermal background
- Might include as a systematic

Investigating Properties of Jets: Number of Constituents

- Since I do not discriminate fake jets on jet-by-jet basis in the analysis, I need to perform the same ensemble level subtraction to any observable I want to use to investigate the properties of my signal jets in data
- Mean number of constituents found in the jet DECREASES with increasing jet $p_{
 m T}$

Investigating Properties of Jets: Leading Track p_{T}

- Same procedure is done, except looking at the leading p_{T} track in the jet
- Leading track $p_{\rm T}$ in ME is highly peaked at ~ 2 GeV
- Same peak at ~2 GeV can also be seen in the combinatorial-subtracted distribution, which may point to leftover combinatorial contributions

$10 < p_{T,jet} < 15$ Bin Comparison

- The Data should not necessarily "agree" with the simulation as these jets are expected to experience some degree of jet quenching
- Looking for a sign that the combinatorial-subtracted distributions might have combinatorial jet contribution left over

 $15 < p_{T,jet} < 20$ Bin Comparison

• Peak at ~2 GeV in Leading $p_{\rm T}$ for Data looks suspiciously like combinatorial-jet contribution

$20 < p_{T,jet} < 25$ Bin Comparison

- Poor statistics due to only looking at 0-10% central
- Agreement between Data and Simulation for all three histograms

40-60% Cent Comparison

- For this centrality only showing Dijet embedding for now, need to update Fast Sim for non-central centralities
- Very consistent agreement between data and the embedding

Discussion

 Based on the peak at ~2 GeV in the leading part comparisons, I am lead to believe that I am under subtracting the contribution of combinatorial jets

- The estimation of the number of combinatorial jets within a given $p_{\rm T}$ is sensitive to the relative definition of ρ between SE and ME event classes
 - Current choice of ρ chosen such that SE/ME ratio is consistent and close to unity as much as possible
 - Alternate choice of p is used as a systematic, however is not significant enough of a change to capture the behavior
- How different would my definition of ρ be in order to subtract out the leading $p_{\rm T}$ peak at ~2 GeV?

Upper Bound of Shifting p

- Shifting ME ρ to lower values causes a shift of the reconstructed ME jet $p_{\rm T}$ spectra to higher values, increasing the amount of combinatorial jets estimated within a given jet $p_{\rm T}$ bin
- Number of jets reconstructed is driven by geometric factors, and is roughly equal between SE and ME
- Lack of yield of high jet $p_{\rm T}$ in ME causes and enhancement of the ME spectra relative to SE, and needs to be scaled down by factor $f_{\rm ME}$
- Having $f_{\rm ME} \ge 1$ is nonsensical and I am considering it an upper limit

$10 < p_{T,jet} < 15$, Shifted ρ

- With using what I assign to be the upper bound on shifting p, the peaks in SE which coincide with the ME peaks are mostly subtracted off, but remnants still seem to remain?
- Reminder: Fake rate using unshifted ρ is ~53% this p_{T,jet} bin

$10 < p_{T,jet} < 15$, Shifted ρ

- $z_{\rm g}$ and comparison to simulation using the shifted values of ho
- Even with a drastic and unreasonable shift, still features remain, though more subtle

$15 < p_{T,jet} < 20$, Shifted p

 Reminder: Fake rate using unshifted ρ is ~26% for this p_{T,jet} bin

 $15 < p_{T,jet} < 20$, Shifted p

- Still slight differences in Data compared to simulation, even with large shifted ρ
- Can still see hint of peak in leading part p_{T} at 2 GeV

Summary

• There are signs that I am not subtracting entirely the contribution of the combinatorial jets from the final distribution

• Shifting ρ alone doesn't seem to be the cause, as even with an absurd shift such features remain (though significantly diminished)

• Need to investigate and resolve this issue before moving forward

• Probably won't show the two lower jet p_{T} bins at DNP

Backup

Rho Simulation Comparisons

Rho (0-10% Cent)

- Dijet Embedding needs work not a perfect comparison yet
- Dijet embedding ZDCx not representative of triggered sample
- Have not yet imposed low multiplicity ۲ cutoff for central events to match my data

Side by Side Comparison: Rho and Rho Shift

Side by Side Comparison: Recoil Yields with and without Rho Shift

Side by Side Comparison: z_g with and without Rho Shift

Side by Side Comparison: z_g with and without Rho Shift

